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1 Introduction

SenseNet (“Structure ENSEmble NETworks”) maps structure ensembles of
biomolecules to atom interaction networks and provides functions for their anal-
ysis and visualization. It is available as a plugin for the free network visualiza-
tion software Cytoscape [1].

Protein structures are frequently analysed to gain insights into the effects of
ligand binding, residue mutations or conformational changes. In contrast to
isolated structures generated by crystallography or other experimental sources,
ensembles obtained from Molecular Dynamics (MD) provide additional informa-
tion such as interaction lifetimes or correlation between conformations, allowing
to investigate dynamic properties of biomolecules. In a structure ensemble net-
work, each node represents one or a group of atoms while edges correspond to
the interactions between these atoms (e.g. hydrophobic contacts or hydrogen
bonds). Each edge is associated with a ’timeline’ which indicates the pres-
ence of an interaction for each structure in the ensemble. Analysis functions
are provided to extract information from these timelines and map results to net-
work nodes and edges. Finally, SenseNet offers comprehensive visualization
functions for side-by-side analyses of networks and 3D structures.

2 Installation

The recommended method for obtaining SenseNet is the Cytoscape App Store
or alternatively from our website at https://bioinformatics.wzw.tum.de. The
latter option requires you to install the plugin manually. To do this, place
the ’SenseNet’ .jar file into the ’CytoscapeConfiguration/3/apps/installed’ folder.
Make sure to remove any old version of SenseNet from this folder before start-
ing Cytoscape.

3 Data model

SenseNet maps protein or other macromolecular structures to a network of
nodes, which correspond to individual atoms or groups of atoms, and edges,
representing interactions between atoms. Atoms may be grouped into a ’meta-
node’; the individual atom nodes that are contained in this group are hence
called its ’subnodes’. In a network, either a metanode or its subnodes may be
’active’ (i.e. present) at a given time. This is achieved by expanding (replacing a
metanode by its subnodes) or collapsing (replacing all subnodes by their meta-
node). The metanodes of a network can be expanded or collapsed by a double
click, and all analysis methods which act on the ’active’ set of nodes and edges
take the current state of the network into account. For example, an analysis can
be performed while some selected residues are expanded into individual atom
nodes, while other residues are represented by a single node. When collaps-
ing subnodes, all edges connecting to these nodes are replaced by metaedges
which represent the cumulative interactions of the replaced edges. Separate
metaedges are created for each interaction type (e.g. contacts or hydrogen
bonds). A detailed description of edge sets and how they change can be found
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in section 5.3.

In order to model a structure ensemble, each edge is associated with a timeline
represented as either a vector of integer values (e.g. presence or absence of
contacts in each time frame) or a vector of real numbers (e.g. interaction ener-
gies). The timeline of a metaedge is called a ’metatimeline’ and is calculated
from its subedge timelines. The ’Sum’ and ’Occurrence’ frame weight methods
yield two different metatimeline variants

Xijk,sum =
∑
α∈i

∑
β∈j

Xαβk

Xijk,occ = min(1, Xijk,sum)

(1)

in which X corresponds to a timeline, i, j are metanodes, k is an interaction
type and α, β are subnodes of i, j.

The weight of an edge describes the strength of an interaction. It is determined
by the ’Timeline weight method’, which is by default the average over all time
frames. Alternatively, users can set the network to any single time frame or use
averages of time blocks, e.g. as obtained from clustering.

Difference networks can be used to compare networks of two similar, but differ-
ent ensembles (e.g. structures with one or more point mutations). A difference
network is created by mapping interactions between equivalent atoms of two
networks onto each other. Two atoms are considered equivalent if they have
the same chain name, residue index, residue inset, residue alternative location
and atom name (see PDB specification [2]). Notably, the residue name is not
compared in order to allow comparisons for residue point mutations. All interac-
tions between two equivalent atoms which have the same interaction type are
considered equivalent. Interactions for which no equivalent can be found are
compared to an empty timeline of all zeroes. Once all equivalent interactions
are mapped, the timeline vectors are subtracted element-wise

Xαβk,diff = Xαβk −Xαβk,ref (2)

where Xαβk is the timeline of the compared network, and Xαβk,ref is the time-
line of the reference network. Metatimelines are calculated analogously to eq.
1.
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4 User Guide

All plugin functions can be accessed via the Cytoscape GUI. The controlling
elements can be found either in the ’SenseNet’ tab on in the control panel or in
the top menu within ’Apps - SenseNet’.

4.1 General
Import network Parameters

• Import networks Choose one or more input sources to import. Use the
plus and minus buttons to add/remove fields. See also section 5.4 for
more details on some of the file formats.

– Input type

* AIF file Import network from an AIF (Atom Interaction Format)
.aif/.zaif file.

· .aif/.zaif file Input file: Either in AIF or compressed ZAIF
format.

· Frame sieve Read only every nth frame. Useful to save
memory.

· Skip timelines Skip timeline depending on a threshold. For
example the ’Skip timelines < 0.05 avg.’ option does not
import a timeline if its average is below 0.05.

* CPPTRAJ H-bonds Import network from CPPTRAJ [3] hbond
command output.

· H-bond file Generated by ’avgout’.

· Timeline file Generated by ’uuseries’.

· Interaction type Interaction type name.

· Ignore backbone Choose to ignore contacts involving back-
bone atoms (atom names C,O,N,CA).

· Frame sieve Same as for ’AIF file’.

· Skip timelines Same as for ’AIF file’.

* CPPTRAJ nativecontacts Import network from CPPTRAJ na-
tivecontacts output.

· Contacts file Generated by ’writecontacts’.

· Native timeline file Generated by ’seriesout’.

· Nonnative timeline file Generated by ’seriesnnout’.

· Contacts .pdb file Generated by ’contactpdb’.

· Interaction type Interaction type name.
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· Ignore backbone Choose to ignore contacts involving back-
bone atoms (atom names C,O,N,CA).

· Ignore intra-residue Choose to ignore contacts within the
same residue.

· Frame sieve Same as for ’AIF file’.

· Skip timelines Same as for ’AIF file’.

* PDB structure H-bonds Import network from H-bonds found in
a PDB file. Hydrogens are required to find H-bonds. All atoms
in the PDB file whose names start with ’H’ are considered hy-
drogens.

· PDB file Select .pdb file to load.

· Distance cut-off Maximum donor-acceptor distance.

· Angle cut-off Minimum donor-hydrogen-acceptor angle.

· Donor mask Atom mask for donor atoms (see mask refer-
ence in section 5.2).

· Acceptor mask Atom mask for acceptor atoms (see mask
reference in section 5.2).

· Interaction type Interaction type name.

* PDB structure contacts Import network from contacts found in
a PDB file.

· PDB file Select .pdb file to load.

· Distance cut-off Maximum contact distance.

· Atom mask Atom name mask to calculate contacts for (see
mask reference in section 5.2).

· Interaction type Interaction type name.

· Ignore backbone Choose to ignore contacts involving back-
bone atoms (atom names C,O,N,CA).

· Ignore intra-residue Choose to ignore contacts within the
same residue.

* DSSP secondary structure Import network of secondary struc-
ture elements. All residues belonging to the same secondary
structure element (helix/sheet) are connected sequentially.

* DSSP file Select .dssp file to load.

* Interaction type Interaction type name.

• Difference network Check box to select input files for creating a differ-
ence network. When checked, the ’Import reference networks’ panel will
appear. The differences are calculated by subtracting the timelines of
equivalent interactions of the reference network from the network loaded
in the top import panel (Import networks).
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• Metanode definition Choose how atom nodes are grouped together.

– Group definition Grouping settings.

* Amino acids Group atoms by their respective amino acids

* Backbone/Sidechain Group atoms by their respective amino
acids, but create seperate nodes for the backbone/sidechain
portions. The Backbone atom names text field contains all
atom names that will be categorized as backbone, separated by
commas.

• Network options

– Create visual style Check to automatically create a new visual style
for the network.

– Network name Displayed name of the network. Automatically filled
when imported files are chosen. Can also be set manually.

– Remove edges Setting to remove (deactivate) edges below a cer-
tain threshold. Equivalent to the setting with the same name in the
’Interaction weights’ tab. Can be changed at any time.

Show log Show task logs.

Parameters

• Log category Select log category to display.

– Global Continuous list of task logs since session start.

– Task Last log of task type selected in the Log type box.

Export network Export current network in AIF format. The exported file can
e.g. be used for importing a multisource network as a single file containing the
combined information of all original import files.

4.2 Shown interactions
Only interaction types with checked boxes are shown in the network. The in-
teraction type of each edge is read from the shared interaction column.

4.3 Interaction weights
This panel controls how individual atom timelines are combined into metatime-
lines. The radio buttons on the left chooses how each frame of the metatimeline
is determined (’Frame weight method’; see eq. 1). The buttons on the right se-
lect how to determine the total weight of the metatimeline (’Timeline weight
method’):

• Average weight Average over all frames in the timeline

• Single frame Select and show the network state at an individual time
frame
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• Clusters Show average of frames within a cluster. Requires previous
clustering analysis

Weighting is performed on all imported edges (see section 5.3 for an explana-
tion of edge sets). For metaedges, all subedges of the same interaction type
are considered. Whenever weighting is performed, the results are written into
the ’weight’ and ’standard deviation’ edge columns.

4.4 Analysis

4.4.1 Network interactions

The analysis functions in this panel act on the whole network. Results are
usually presented as tables/plots in the result panel on the right.

Timeline Shows the timelines for all imported edges. For metaedges, the
metatimeline is calculated according to the selected weight method.

Parameters

• Frame weight Method for determining metatimelines. See section 4.3

Degree Calculates weighted degree for active edges. Results are written into
the ’degree’ node table column.

Parameters

• Degree weight Method for calculating weights for adjacent edges.

– Edge weight sum Sum values of edge columns.

• Weight column Source column for edge weights.

• Negative weights Method to treat negative edge weights.

– abs(x) Use absolute value of x.

Centrality Calculate weighted centrality measures for active nodes, based
on shortest paths. The algorithms are implemented as described in refs. [4, 5].
If two nodes are connected by multiple edges, they are treated as one, using
one of several merging methods. Results are written into the ’centrality’ node
table column.

Parameters

• Centrality type Centrality measures to compute. A transformation func-
tion maps edge weights to determine the distance between nodes (see
algorithm 10 in ref. [4])

• Multiple edges weights Method for merging parallel edges between two
nodes.

– Sum/Min/Max Use the weight sum/average/min/max of parallel edges
as total weight.

– Edge count Use the number of edges between two node pairs as
total weight.
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– Uniform All edges are assigned an uniform weight. Parallel edges
are ignored. This option effectively gives the centralities of an un-
weighted network.

• Weight column Column of edge weights.

• Distance transformation Function to transform edge weights to dis-
tances. The function is commonly chosen such that a high weight cor-
responds to a low distance.

• Negative weights Method to treat negative edge weights.

• Normalization Type of normalization to apply to centrality values.

– None Do not perform normalization.

– Min-max range Subtract the minimum centrality of the network from
each value and divide by the range of values. The normalized value
is limited between 0 (lowest centrality) and 1 (highest centrality).

– Max node pairs Divide each node’s centrality by the theoretical
maximum number of node pairs, excluding that node, in an undi-
rected network: (N−1)(N−2)

2 , where N is the total number of active
nodes.

Correlation Determine correlation between active edges. The edge neigh-
bour correlation factor ECF is calculated as

ECF(i) =
∑
j∈A

|c(i, j)| (3)

where i, j are network edges, c(i, j) is a correlation function of edges i and j,
and A is the set of edges that i is compared to. Correlation factor types may
use different edge sets for A.

Parameters

• Correlation factor type

– Neighbour Edge neighbour correlation factor. Here, A is the set of
edges adjacent to i (i.e. separated by at most one node)

• Correlation method Correlation measure to use (see text below).

• Frame weight Method for determining metatimelines. See section 4.3.

• Reference network For methods calculating correlation differences.

• Edge mapping Determine how edges are matched between active and
reference networks.

– Shared name Match edges with identical ’shared name’ entries in
the edge table.

– Match location Require that the ’shared name’ entries of source
and target nodes approximately match between networks. The ap-
proximation is that only the ’residue name’ is allowed to differ. The
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’altloc’ and ’residue insert’ identifiers are not considered part of the
residue name and thus still have to be identical. This option is in-
tended for comparing two networks differing e.g. in point mutations
of single residues in order to match edges representing conserved
interactions.

The ’Mutual information’ correlation method determines correlation as

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log2

(
p(x, y)

p(x)p(y)

)
(4)

in which, X and Y are integer timelines, p(x, y) is the joint probability function
of values x, y, and p(x), p(y) are marginal probability functions of x, y. This
method should be used when the timeline contains discrete values, such as
the count of interactions. The unit for mutual information results is ’bits’.

’Mutual information difference’ calculates the sum of absolute changes in ex-
pected pointwise mutual information for each event

I(X;Y ) =
∑

x∈(X
⋃

X̂)

∑
y∈(Y

⋃
Ŷ )

∣∣∣ p(x, y) log2 ( p(x, y)

p(x)p(y)

)

−p̂(x, y) log2

(
p̂(x, y)

p̂(x)p̂(y)

) ∣∣∣ (5)

where the X̂, Ŷ denote timelines in the reference network corresponding to
X,Y . Edges are considered equivalent if their ’shared name’ columns match.
If no match can be found for an edge, the reference timeline is replaced by a
vector of zeroes. This measure is useful for determining differences in dynamic
behaviours between simulations, f.e. a protein with and without a ligand.

Alternatively, choosing the ’Pearson’ correlation method will calculate the Pear-
son correlation coefficient between interaction timelines

r =

∑
i(X(i)− µx)(Y (i)− µy)

σxσy
(6)

where i is a discrete time frame, X(i), Y (i) are functions yielding the corre-
sponding timeline value at position i, with associated sample means µ and
standard deviations σ. This method is recommended when the timeline con-
tains continuous values like interaction energies.

The resulting correlation factors for each edge are written into the ’correlation
factor’ column.

Lifetime Calculates estimates for the interaction lifetimes. These are calcu-
lated from the intermittent autocorrelation function
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CL(k) =
1

N

N−k∑
i=0

Xocc(i)Xocc(i+ k)

Xocc(i)2
(7)

in which k is the discrete lag step, N is the total number of time frames and
Xocc(i) is the occurrence weighted metatimeline function. The calculated life-
time is intermittent, i.e. the interaction may break and reform between the
compared time frames. The average lifetime is estimated from the autocorre-
lations following the same protocol as for the autocorrelation time during error
estimation.

If the ’Replicas’ setting is set to n > 1, the timeline is divided into n equal sized
blocks, which are analyzed separately. The average of block lifetimes is written
to the ’lifetime’ edge column.

Weight error Calculates weight error estimates for all imported edges. These
functions aim at approximating the standard error of the timeline weight.

Parameters

• Error method Method for calculating the error. Currently, only ’Autocor-
relation’ is available.

• Frame weight Method for determining metatimelines. See section 4.3.

• Replica weight Method to merge errors from multiple replicas.

– Max/Avg/Min Use maximum, average or minimum of replicas as
final error value.

The autocorrelation method is based on the approach outlined in ref. [6]. The
timeline autocorrelation for different discrete lag steps is calculated as

C(k) =
1

Nσ2

N−k∑
i=0

(X(i)− µ)(X(i+ k)− µ) (8)

with k as the discrete lag step, N as the total number of time frames, X(i) as
the timeline function at each discrete time frame, µ as the mean of X, and σ2 as
the variance of X. A single exponential of the form A∗ eBx is fitted by weighted
linear regression in log space with weights 1

k+1 . To reduce the influence of
noisy function tails, only autocorrelation values above 0.1 are considered for
fitting. The integral of the fitted exponential is calculated analytically and serves
as estimate for the autocorrelation time τ . The estimate for the independent
sample size is then determined as

Nind =
N

τ
(9)

which is used to estimate the standard error of independent samples

σe,ind =
σ√
Nind

(10)
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If the ’Replicas’ setting is set to n > 1, the timeline is divided into n equal sized
blocks, which are analyzed separately. The final error is determined as by the
’Replica weight method’.

The results of this analysis are written into the ’error estimate’, ’autocorrelation
sample size’, and ’autocorrelation time’ edge columns.

Entropy For each network edge, determine Shannon’s information entropy

H(X) = −
∑
x∈X

p(x) log2(p(x)) (11)

where X is the edge’s integer interaction timeline. Results are written into the
’entropy’ edge column. The unit of reported results is ’bits’.

Parameters

• Frame weight Method for determining metatimelines. See section 4.3.

Random Walk Perform a random walk through the network. At each step,
the next visited node is selected randomly from the list of nodes connected to
the current node via one or more edges (neighbors). Multiple edges between
node pairs do not affect the selection probability.

Parameters

• Walk mode

– Default Regular random walk starting from the specified node and
finishing after the specified number of steps, tracking visited nodes
along the way. Restarts do not reset the list of visited nodes.

– Targeted Random walk starting and finishing at the specified nodes.
If the target node is not reached after the specified number of steps,
the run is restarted. Restarts always reset the list of visited nodes.

– Targeted-Symmetric Like ’Targeted’, but each run is performed an
additional second time after exchanging start and target nodes. The
total number of runs is doubled.

• Weighting mode

– Unweighted The next node is selected from the list of neighbors
using a uniform probability distribution.

– Weighted The next node is selected using a weighted probability
factor obtained from a node table value specified by ’Weight Col-
umn’. The probability of a node neighbor to be selected for the next
step is then

p(i) =
w(i)∑

n∈N w(n)
(12)

where i is the neighbor candidate from the node neighbor list N and
w(i) is the weight obtained from the ’Weight Column’ for node i.
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– Weight column Column used for obtaining weights and calculate
weighted probabilities.

– Max steps Maximum number of walk steps in a single run.

– Restart probability Probability of restarting the run at each step.
The list of visited nodes may be retained or cleared, depending on
the ’Walk mode’.

– Num runs Number of independent runs to be performed. Nodes
visited multipled times during one individual run are counted only
once. Individual runs are added up to yield the final result.

– Random seed Seed value for random generator. Choosing the
same seed guruantees reproduction of a specific analysis outcome,
provided that the network and all other parameters are the same.

The number of random walk visits for each node are written into the ’visited’
edge column.

4.4.2 Selected interactions

Show detailed analyses for one or more selected edges.

Timeline Equivalent to the corresponding function in section 4.4.1, but shows
a plot of the timeline using the currently active frame weight method.

Correlation Calculates correlation measures between a single selected edge
and all other imported edges (see section 4.4.1).

Autocorrelation Equivalent to the corresponding function in section 4.4.1.
Uses the currently active frame weight method and plots autocorrelation func-
tions for each selected edge.

Blocked error Plots the blocked standard errors following a procedure from
ref. [6]. Uses the currently active frame weight method.

In essence, the standard error (see eq. 10) is calculated multiple times be-
tween blocks of time frames. For the minimum block size of 1, the result is the
conventional standard error. For a block size of 2, each time frame is averaged
with its successor yielding n

2 non-overlapping ’block averages’, where n is the
total number of time frames. The standard error is then calculated between
these block averages as if each was an independent data point. This is re-
peated for increasing block sizes. The maximum block size is set as n

4r , where
n is the total number of time frames and r is the number of replicas. The total
standard error can be estimated from the plot as the value to which the blocked
standard errors converge.

4.4.3 Network matrix

These functions allow plotting and exporting networks in matrix form.
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Show Display matrix of active network edges as a dotplot.

Parameters

• Weight column Select column to use for weighting.

• Node index column Select column to use as indices for the X and Y
axes of the plot. Only columns of integers are allowed.

• Min/Max value Set min and max value for weight color scale.

Export Export matrix of active network edges.

Parameters

• Weight column Select column to use for weighting.

• Node name column Select column to use as names for the X and Y axes
of the plot.

• Output file File to write matrix to.

4.4.4 Paths

The following functions provide functions for the identification of pathways be-
tween two selected nodes.

Shortest paths Find all shortest paths by traversing active edges between
two selected nodes, starting from the node that was selected first. Edges are
considered to represent equal distances, and parallel edges are ignored. The
paths are presented in a table in the result panel. In addition, two measures of
interaction strength are shown: The ’timeline sum’ is the sum of average inter-
actions of edges contributing to the pathway. In contrast, ’timeline occurrence’
gives the average occurrence weights along that path. If multiple edges are
present between two nodes, they are treated as if their timelines were merged.

Suboptimal paths Find all paths of a fixed length range between two nodes.
Only active edges are considered and all edges are assumed to represent the
same distance. Minimum and maximum path lengths can be set as parame-
ters. Otherwise, output is equivalent to the ’Shortest paths’ function.

4.4.5 Clustering

From this panel, functions for clustering of time frames can be accessed.

Cluster Start a new clustering run, grouping time frames with similar network
states until a limit is reached. For this purpose, each time frame in the network
is represented by an interaction matrix of dimension N × N , where N is the
number of nodes. Each entry in the matrix corresponds to the selected weight.
If multiple edges are present between two nodes, their weights are summed.
The distance between two time frames is calculated as the Frobenius norm of
their matrix differences. This set of distances is then used for clustering.

Parameters

14



• Clustering method

– Agglomerative Hierarchical agglomerative clustering.

– Linkage Select linkage mode for agglomerative clustering.

• Target cluster count/Epsilon Select to stop clustering either at N clus-
ters or when the minimum intercluster distance drops below a certain
limit.

• Sieve Select to use only every Nth frame for clustering.

• Frame weight Select weight mode for the frame interaction matrix. See
section 4.3.

4.5 Structure visualization
This panel contains functions to connect Cytoscape to a 3D structure viewer
session. Networks can be linked to structures or trajectories loaded in the
viewer. Node and edge selections in a linked network are highlighted in the
structure.

Connect viewer Start a structure viewer and connect to it.

Parameters

• Viewer Select one of the available viewers to start (VMD, PyMOL or
UCSF Chimera). See section 2 for viewer installation requirements.

• Load session Select a session file for the viewer to load after starting.

Model link Shows whether the currently focused network is linked to a struc-
ture.

Link network Link current network to a structure in the connected viewer.

Parameters

• Single structure Load a single structure into the viewer and link the net-
work to it.

– Structure file Select file to load structure from.

– Format Automatically determined by structure file extension. Can
be set manually. Available options depend on the connected viewer.

– Model name Model name to use for the structure. Must be unique.

• Trajectory Load a trajectory of structures into the viewer and link the
network to it.

– Structure file Select file to load structure or topology from.

– Format same as in ’Single structure’. Depending on the connected
viewer, topology formats are accepted as well.

– Model name same as in ’Single structure’.
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– Trajectory file Select file to load trajectory from.

– Trajectory format same as ’Format’, but for trajectories.

• Preloaded Link network to a structure already present in the viewer

– Model name Select model name in structure viewer to link network
to.

Unlink network Remove structure link of the current network. An option is
given to remove the structure from the viewer as well.

Pause link Temporarily disable structure link of the current network. Until
the link is unpaused, selection changes are not updated between network and
structure viewer.

Transfer colors Color linked structure according to node colors in the net-
work. For VMD and UCSF Chimera, the visually closest color of the defined
color set is used. For PyMOL, the colors are transferred exactly as shown in
the network.

4.6 Style

4.6.1 Node style

Auto style Map continuous node attributes to visual style. Creates a copy of
the current style with a ’ auto’ suffix. If a style with that name already exists, it
will be overridden.

Parameters

• Style property Select visual property to map values to. Different style
settings are available for each property.

– Color Map node attribute to fill color.

* Min/Mid/Max value Minimum/Middle/Maximum value to map.
Default values are determined automatically according the range
of values in the network for the selected column.

* Low/Mid/High color Color gradient from low to high.

– Size Map node attribute to node size.

– Min/Max value see ’Color’.

– Min/Max size Minimum/Maximum node size.

• Column Column to map values from. All columns containing ’Double’
values can be chosen.

Label format Select node label style. See section 5.1 for an explanation of
naming conventions.
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Renumber Renumber residue indices in labels.

Parameters

• Chain Chain(s) to renumber. Select one character (’A’,’B’, etc.) or ’*’ to
select all chains.

• First residue index First residue index to renumber.

• Last residue index Last residue index to renumber or ’-1’ to select up
until and including the last residue index of selected chain(s).

• Offset Offset to add to the selected residues. Can be positive or negative.

Note that renumbering always acts on the original residue numbering. There-
fore, if you renumbered residue 1 to become residue 100, you would have to
select residue index 1 again to renumber it a second time. In order to return all
numberings to the original imported state, you can use the ’Reset numbering’
button in the dialog.

Labeling and renumbering never changes the ’shared name’ or ’residue index’
columns. Instead, results are written into the ’label’ and ’residue index label’
columns in the node table. This is done to avoid accidental ambiguity and loss
of data. See section 5.1 for an explanation of the underlying concepts.

4.6.2 Edge style

Auto style Analogous to the corresponding function in section 4.6.1.

4.7 Settings
Structure viewer Configuration for structure viewers

• PyMOL/VMD/UCSF Chimera location Location to search for respective
executables. If no location is given, the plugin will attempt to run the
displayed command from the operating system’s PATH variable

• Max shown residues Maximum number of residues to show as sticks
before an error is thrown

• Max shown interactions Maximum number of interactions highlighted
before an error is thrown

• Selected interaction color Highlight color for selected interactions

• Selected residue color Highlight color for selected residues

• Zoom to selection Check to enable auto-zoom to selected residues

5 Concepts

5.1 Labels and identifiers
Within the plugin, certain naming conventions are used to map nodes and
edges to their structural counterparts. The standard naming style for nodes
is
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<Chain>/<Altloc><Residue name><Residue insert>
-<Residue index>(-<Mutated residue name>)(:<Atom name>)
(#<Group tag>)

The standard naming style for edges is

<Node name 1> <Bridge name> <Node name 2>
<Interaction type>

The data fields correspond to the RCSB PDB [2] standard1. ’Group tag’ is used
when a non-amino acid metanode definition is used (such as backbone / side-
chain). ’Bridge name’ is used for interactions that involve more than two atoms,
for example the name of the hydrogen in a hydrogen bond interaction. For
amino acids, three-letter codes are used for residue names, but longer names
are possible. Empty fields are allowed. Field separators enclosed in parenthe-
ses will only appear if the corresponding field is filled. For edges with a bridge
atom, node names 1 and 2 are the source and target nodes, respectively. If
no bridge atom is present (e.g. in metaedges), the node names appear in al-
phabetical order. This is done to ensure that edge names are predictable for
symmetric interactions. the An example for a standard node label is ’A/TYR-
290’, and for a standard edge label it is ’A/TYR-290 A/VAL-80 H-bond’.

A node or edge ’name’ (as found in the ’shared name’ or ’name’ columns)
always follows the standard naming style, is assigned at import and is never
changed. ’Names’ are meant to identify edges as uniquely as possible, but
there is no guarantee that a name is unique in the network. Node label
customization functions create ’labels’, which are allowed to omit information
(such as chain names). Edge labels are automatically updated accordingly to
the node labels. Labeling functions always write into separate ’label’ columns.

5.2 Atom masks
When importing networks using the plugin, sometimes a selection of atom
names is needed. Whenever an ’atom mask’ is required, a Java regular ex-
pression2 needs to be provided. For most purposes, a tiny subset of the regu-
lar expression language is sufficient for a proper selection. Examples of often
used patterns are

• .* All atom names (. = any character, * = zero or more repetitions of the
preceding character)

• C.* Atom names starting with C

• F.*|O.*|N.* Atom names starting with F,O, or N (| = ’or’)

5.3 Network operations
The number of nodes and edges currently present can change due to filtering
or expanding/collapsing of metanodes. Hence, it is important for each function
that deals with edges to define on which set it operates. The sets are defined
as follows:

1http://www.wwpdb.org/documentation/file-format-content/format33/v3.3.html
2https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
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• Active nodes/edges All edges that are currently present in the network.
This includes nodes that are present, but hidden from view (f.e. using
Cytoscape’s ’hide nodes’ feature). A node or edge that becomes inactive
is temporarily deleted from the network. When an inactive node/edge
becomes active, it is restored.

• Imported nodes/edges All nodes/edges from the original import, regard-
less of whether they are active or not.

The following operations can render a node/edge active or inactive:

• Expanding/Collapsing a metanode The metanode and associated meta-
edges are deactivated. Subnodes and associated edges are activated.

• Edge weight filtering Edges which are filtered out due to low weights
are deactivated.

• Subnetwork creation When subnetworks are created from selected nodes,
the selected nodes become the active node set for that network.

• Manual deletion Manually deleting nodes/edges f.e. using the ’DEL’ key
are deactivated, but can be reactivated f.e. when weight filtering is up-
dated or a metanode is expanded/collapsed.

Generally, the set of active nodes and edges is equivalent to the currently
visible network. Nodes and edges that are only hidden due to visualization
(such as using Cytoscape’s ’hide nodes/edges’ feature) are still considered ’ac-
tive’ and part of the network. Inactive nodes are temporarily deleted from the
network and are hence invisible both in the presentation and for network analy-
sis algorithms. Hence, tools like NetworkAnalyzer or other analysis plugins can
be used normally.

5.4 AIF file format
The AIF (Atom Interaction Format) was created as a convenient way to de-
fine interaction networks based on timeline data. All lines start with a record
indicator, followed by one or more comma-separated data fields. Interaction
data may be given as TIMELINE and DIFFERENCE TIMELINE records, which
define the following fields

• interaction type (string)

• source atomname (string)

• target atomname (string)

• source residue index (int)

• target residue index (int)

• source residue name (string)

• target residue name (string)

• source residue insert (string)

• target residue insert (string)
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• source altloc (string)

• target altloc (string)

• source chain (string)

• target chain (string)

• bridge names (whitespace delimited list of strings)

• timeline (whitespace delimited list of ints/floats)

An AIF file must have the following properties:

• Lines are separated by Unix style newline (’Linefeed’) characters.

• A line consists of one or more fields, which are separated by a comma.
Leading and trailing whitespace are ignored for each field. Fields may be
empty.

• The first field of each line denotes the record type. The record type de-
fines how many fields follow in the same line and what their field data
types are. The record type is case insensitive.

• Lines starting with a ’#’ character indicate comment lines and should be
ignored by parsers.

• Empty lines or lines that contain only whitespace should be ignored by
parsers.

• Tabs count as regular characters (not whitespace) and should be avoided
entirely.

In order to save disk space, AIF files may be zipped (.zaif).

6 External tools guide

The SenseNet plugin can interact with a number of programs. This section
gives details on how to set up and use those programs together with the plugin.

6.1 Command line interface
In order to allow automatized workflows, SenseNet allows some of its functions
to be called either via the Cytoscape automation console, script files or the
CyREST interface. They fulfill the same purpose as their equally named GUI
counterparts and are called by preceding them with the “sensenet” namespace
tag (e.g. “senseset importAif”). In addition, functions provide documentation
by using the “help” command (e.g. “help sensenet importAif”). Validity of input
is checked after parsing the command and corresponding error messages will
appear, spelling out problems and allowed input options.

6.2 Structure viewers
The plugin can interact with several structure viewers (PyMOL, VMD and UCSF
Chimera) in order to map the network onto a molecule structure. In order to use
the plugin together with one of these viewers, it is only necessary that the plugin
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can start the viewer. By default, it will attempt to look up the installation location
from the operating system’s PATH variable (equivalent to typing ’pymol’,’vmd’ or
’chimera’ on the command line). Alternatively, the installation location can be
set manually in the ’Settings’ menu. The viewer needs to be started using the
’Connect viewer’ button in order to link a network.

The plugin was tested in combination with PyMOL 2.5.0, VMD 1.9.2 and UCSF
Chimera 1.12.

6.3 CPPTRAJ
CPPTRAJ [3] is part of the AmberTools program suite and can be used to
process and analyze molecular dynamics trajectories. The following sections
describe how to use CPPTRAJ to write interaction timeline data, which can be
used to create interaction networks. The scripts were tested with the CPPTRAJ
version contained in AmberTools17.

6.3.1 nativecontacts

The following output files of the CPPTRAJ nativecontacts command are nec-
essary for network import:

• contacts.out Contact table

• contacts.series Timeline series for native contacts

• contacts.nonnative.series Timeline series for non-native contacts

• contacts.pdb PDB file as output by nativecontacts

These files can be created using the following CPPTRAJ commands (adjust
bold arguments as necessary)

parm md.prmtop
trajin md.nc
nativecontacts @C* distance 5.0 \

writecontacts contacts.out contactpdb contacts.pdb \
series seriesout contacts.series \
savenonnative seriesnnout contacts.nonnative.series

run

6.3.2 hbond

The following output files of the CPPTRAJ hbond command are needed for
importing a network:

• hbonds.out Interaction table

• hbonds.series Interaction timeline series

These files can be generated by the following CPPTRAJ commands (adjust
bold arguments as necessary)
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parm md.prmtop
trajin md.nc
hbond !(:WAT,Na+,Cl-) dist 3.5 angle 135 \

avgout hbonds.out \
series uuseries hbonds.series

run

7 Troubleshooting

7.1 Installation
• Could not find plugin for installation Make sure that your current working

directory contains the .jar file found in the zip archive

• Could not find Cytoscape app directory Check whether Cytoscape is in-
stalled on your system. If you never started Cytoscape on your machine,
try starting it once before installing the plugin. The CytoscapeConfigura-
tion directory will be created on its first start.

7.2 Session files
Cytoscape offers to save the current working state in a .cys session file. The
plugin is fully compatible with this function. However, reading session files
generated with older versions of the plugin may fail. In general, you can expect
session to work if the first two digits of the plugin version are identical. For
example, a session created with version 1.2.0 is guaranteed to be readable by
plugins of version 1.2.X, but not by version 1.1.0.

7.3 Slow analyses and ’out of memory’ errors
Keeping the full timelines of long trajectories consumes a lot of memory, espe-
cially for large systems. Reducing the amount of analysed time frames, e.g. by
using the ’sieve’ option in CPPTRAJ or during import, can accelerate analyses
substantially. For a workstation with 8 GB RAM and a protein of about 200
amino acids, we found a number of 5000 frames to work well.

7.4 Subnetworks and changes in node/edge tables
It is often useful to create one or more subnetworks to analyze specific regions
in the protein. It is important to remember that the node and edge data tables
are shared between the network and all subnetworks. This means that an
analysis performed in a subnetwork also changes the data tables in all other
networks belonging to the same group.
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